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Abstract

An algorithm is presented which solves the multi-dimensional diffusion equation
on complex shapes to 4'®.order accuracy and is asymptotically stable in time. This
bounded-error result is achieved by constructing, on a rectangular grid, a differentiation
matrix whose symmetric part is negative definite. The differcatiation matrix accounts
for the Dirichlet boundary condition by imposing penalty like terms.

Numerical examples in 2-D show that the method is effective cven where standard
schemes, stable by traditional definitions, fail.
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1 Introduction

Recently there has been renewed interest in finite-difference algorithms of high order of
accuracy (42 and above), both for hyperbolic and parabolic p.d.e’s (see for example, [1), [2],
(3] ). The advantages of high-order accuracy schemes, especially for truly time dependent
problems, are often offset by the difficulty of imposing stable boundary conditions. Even
when the scheme is shown to be G.K.S.-stable the error may increase exponentially in time.

This paper is concerned with 4'2-order approximations to the long time solutions of the
diffusion equation in one and two dimensions, on irregular domains. By an irregular domain,
we mean a body whose boundary points do not “cincide with nodes of a rectangular mesh.

In section 2 we develop the theory for the one-dimensional semi-discrete system resulting
from the spatial differentiation used in the finite difference algorithm. Energy methods are
used in conjunction with “SAT™ type terms (see {1}), in order to find boundary conditions
that preserve the accuracy of the scheme while constraining an energy norm of the error to
be temporally bounded for all t > 0 by a constant proportional to the truncation error.

In section 3 it is shown how the methodology developed in section 2 is used as a building
block for the multi-dimensional algorithm, even for irregular shapes containing “holes.”

Section 4 preseats numerical results in two space dimensions illustrating the long-time
temporal stability of the method, in contradistinction to “standard” methods for cartesian
grid on irregular shapes.
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2 The One Dimensional Case

We consider the following problem
%:-:b-g;;+f(z,t); ,$z<Tx, t20, k>0 (2.1a)
¥(2,0) = uo(2) (2.1%)
u(T'2,2) = ge(t) (2.1¢)
u(Fg,?) = gr(t) (2.1d)
and f(z,t) € C.

Let us spatially discritize (2.1a) on the following uniform grid:
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Figure 1: One dimensional grid.

Note that the boundary points do not necessarily coincide with 2y and zx. Set 2,4, -z; = A,
1SjEN-1; 1 =-Ty=3h, 0S8, <); Tr—ax=98h, 0SSR < 1.

The projection unto the above grid of the exact solution u(z,t) to (2.1), is u,(t) =
u(z;,t) a u(t). Let D be a matrix representing the second partial derivative with respect to

z, at internal points without specifying yet how it is being built. Then we may write
%u(i) = K{Du(t) + B + T} + £(¢) 2.2)
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where T is the truncation error due to the numerical differentiation and f(t) = f(z;,1),
1 £ j £ N. The boundary vector B has entries whose values depend on gz,9r, 42,7 in
such a way that Du + B represents the 2*? derivative everywhere to the desired accuracy.
The standard way of finding a numerical approximate solution to (2.1) is to omit T from
(2.2) and solve

%v(t) = k(Dv(t) + B) +£(2) 2.3)

where v(t) is the numerical approximation to the projection u(t). Ar equation for the
salution errar vector, &t) = u(t) - v(t), can be found by subtracting (2.3) from (2.2):

%e= kDat) + FT(1) 24)

Our requirement for temporal stability is that || € |, the Ly norm of €, be bounded by a
“constant” proportional to A™ (m being the spatial order of accuracy) for ¢ll t < 0. Note
that this definition is more severe than either the G.K.S. stability criterion [4] or the definition
in (1.

It can be shown that if D is constructed in a standard manner, i.e., the numerical second
derivative is symmetric away from the boundaries, and near the boundaries one uses non
symmetric differentiation, then there are ranges of values of yp and 4 for which D is
not negative definite. Since in the multi-dimensional case one may encounter ail values of
0 € 71.78 < 1, this is unacceptable.

The rest of this section is devoted to the construction of a scheme of 4" order spatial
accuracy, which is temporally stable for all 4z, 5.
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The basic idea is to use a penalty-like term as in the SAT procedure of ref [1]; here,
however, it will be modified and applied in a different manner.
Note first that the solution projection u;(t) satisfies, besides (2.2), the following differ-

ential equation:

%:. = kDu + kT, + (1) (25)

where now D is indeed a differentiation matrix, that does not use the boundary values, and
therefore T, # T but it too is a truncation error due to differentiation.
Next let the semi-discrete problem for v(t) be, instead of (2.3),

% = {Dv - n(ALv - g2) - (AR - gr)) + (1) (26)

where gz, = (1,...,1)Toz(t); gr = (1,...,1)7Tgr(t). are vectars created from the left and

right boundary values as shown. The matrices Az and AR are defined by the relations:
Asu=gL-Ty; Apumgr-Thg, (2.7)

i.e., each row in Az(AR) is composed of the coefficients extrapolating u to its boundary value
gL(gr), at T¢(Tr) to within the desired order of accuracy. (The error is then T (TRr).) The
diagonal matrices 7, and 7R are given by

7L = diag (12,70, ... TLy)i  TR= diag (TR,y...TRy) (2.8)

Subtracting (2.6) from (2.5) we get

%:- = k{DE - 1L AL~ TRARE+ T,) (2.9)
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where

Ti=Te+ Ty + /TR

Taking the scalar product of & with (2.9) one gets:

32IEP = ME(D-nAL- AR} + KET)
= MEMO+KET) (210

We notice that (& M¢) is (& (M + M7)e/2, where
M=D-1AL - TRAR. (211)
If M + MT can be made pegative definite then
EM+ MR~ llEf?, (o> 0) (2.12)
Equation (2.19) then becomes

d .. - -
3 171 ~ka || £ +K&T))

N

and using Schwartz’s inequality we get after dividing by || ||

d -9 -
T €IS —kco NP +E YT |

aad therefore (using the fact that v(0) = u(0))

1els H;-oﬂ“-'-(l — ety (2.13)
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where the “constant” || Ty Jar= maxocret | Ta(7) |l
If we indeed succeed in constructing M such that M + M7 is negative definite, with ¢ > 0
independeat of the size of the matrix M as it increases, then it follows from (2.13) that
the norm of the error will be bounded for all ¢ by a constant which is O(A™) where m is
the spatial accuracy of the finite difference scheme (2.6). The numerical solutioa is then
temporally stable.

The rest of this section is devoted tc this task for the case of m = 4, i.e, a fourth order
accurate finite difference algorithm.

Let the n x n differentiation matrix, D, be given by

" 45 -154 214 -15% 61 -10
10 ~-153 -4 M4 -6 1
-1 16 -3 16 -l
-1 16 =30 116 -1
-1 16 =30 16 -1

1242

-1 16 =30 16 -1
-1 16 -30 16 -1

1 -6 14 -4 =15 10
L ~10 61 -136 214 -154 43 |
(2.14)

The upper two rows and the lower two rows represent non-symmetric fourth order accurate

approximation to the second derivative without using boundary values. The internal rows
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are symmetric and represent central differencing approximation to ugr to the same order.
Note that D is not negative definite, and neither is the symmetric part of 4(D + DT) which

is given by:

90 -—-14 213 -156 61 -10
-4 =30 12 13 -6 1
213 12 ~-60 2 -2 0
-156 13 82 -6 32 =2
61 -6 =2 32 -60 32 -2
-10 1 0 -2 32 -60 32 -2

242

-2 82 -60 82 =2 O 1 =10
-2 32 -60 32 -2 -6 61
-2 82 -60 32 13 -156

0 -2 32 -60 12 213

1 -6 18 12 =30 -144

-10 61 =156 213 -144 90 |

(2.15)
lo order to construct M we need to specify Az, Ar, 72 and 7. We construct Az as
follows:

Ap = AlD 4 c A0 (2.16)




where

The a’s are given by

AL =

oy a3 a3 ag ag 0 ... 0
a oy as ag a3 0 ... 0
ay a3 as ag as 0 ... 0
Agbiga,agasa‘a;(l..o,
o a3 a3y a4 as 0 ... 0
Loy agaga.aso...o,]

L= dilg [-2001/71, 0,. ..,0]

=15 ~-1010 510 ...
-1 5 ~-10 10 510 ...

[ ]

151010 -510..0

25 .38,.5,. 1,
@ = ltpuigutpitgi

)

13 3 1
a = - (471. + ?n’. + 572 + a'r:‘.)

19 1
ay = In+ T"I;. +217 + e

4 7 7 1
a = - (§7L 3+t -6-‘7?.)

1

a; = -‘n+-—12 'n,+247,,

8

(2.17)

(2.18)

(2.19)

(2.20)




Note that A%)v gives a vector whose components are the extrapolated value of v at z = I

(i.e., vr,(2)), to fifth order ascuracy; while A{l)v gives a vector whose components represents
(80, /82°)h®. Since Cy (see 2.18) is of order unity, then Azv = (AX) + ¢, A¥))v represents

an extrapolation of v to vr, to fifth order.

Before using Ay, in (2.11) or (2.6) we must define 7p:

| S
n= m’dn‘[ﬁa T3, T8y r‘\ﬁ)ov . 'ao]

where

Te

s

71/2¢,

(=94 -~ ayn)/eny

(113 = ayn) /ey

(=56 = aqny)/ e

(11 = agn ) /ey

(2.21)

(2.22)

The right boundary treatment is constructed in a similar fashion, and the formulae corre-

sponding to (2.16) - (2.22) become:

Ar

[ 0.. . 0

0... ... ... 0

0... ... ... 0

@ _ |0 o 0
A=t 0
0... «.. ... 0

... ... ... 0

(0eee oo . 0

(N~ 3 Y — O - O — I ]
?

-~
2
+
€
®
2
2

QN-4
QN4
ANy
aN -4
anN-4
AN~¢
QAN~4
AN=q

e 9

aN-s
ax-3
aN-3
aN-3
aN-3
aN-s
aNx.s
aN-3

anN-2
aN-2
QaN=3
anN-2
ax-3
QN-2
anN-32
aN-3

aN-1
aN-1
QN1
QN1
anN-1
QN-1
QN-1
QN-1

ay
ay
ay
an

an
an

an |

(2.23)

. (2.24)




Cr = diag[0,0,...,0, =20ay/71)

1 =510 -105 -1
1 =510 -105 -1

00..01-510 -1035 -1

The a's are here:

2 %, 5, 1,
an l+12'm+24'm+ 273 2R

13 3 1
anar = = (m+ o+ 3ok + 11h)
19 1
an-2 = 3r+ T?ﬁ +273+ I‘v}g
4 7 7 1
ay-s = - (g'm + 5‘7}3 + g‘n’z + E‘Yﬁ)

1 11, .1 1
aN-¢ = 2R+ g’fn + 2‘7‘3 + ﬁ'ﬁb

TR = 12,'2 d‘.!lo 2 TNt TN=3 TN=2« TN =1y f.V].

™ = T1/2an
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(2.25)

(2.26)

(2.27)

(2.28)




™-1
™-2
TN=3

TN-4

We are now ready to construct

1 1
3M+MT) =2 {D+DT

Upon using equations (2.14)-(2.29)

M+ MT
=
W
0. 0 -2 3
-2
ake
0

-60 32

(~94 ~ ana17v)/an
(113 — an-atn)/an (2.29)

(=56 - an-s7v)/an

(11 - an-¢7~)/axn

[re (AL + e AD) + (AP + crAlP))

[r(A®) + cAD) + (AP + cr AT} (2.30)

in (2.30) one gets:

-2
32

0
-2
-2
32 -60 32
-2 32 -60

-2
32 =2
32 -60 32 -2
-2 32
-2

0 ...

WiR)

(2.31)
1




where (&) and W are 6 x 6 blocks given by:
W = w8 4 Wi

W = P 4 iR

4

(0 i=lorj=1

wib = ¢ b 1<i,j<5

2

| =(airs +a;n) i, 5#1 |
0 i=Norj=N
wib) = 0SN-iN=-j<4

-(ax-;fy- § <+ tﬂ.\‘-;‘ﬁ\'-i)

(-1 0 0 0 0 0

0 -30 12 13 -6 1

wh 2| 0 12 -60 2 -2 o
3 0 13 32 -60 32 -2
0 -6 -2 32 —60 82

[ 0 1 0 -2 32 -60

[~-60 32 =2 0 1 0
2 ~60 3 -2 -6 0
WwiR -2 32 -60 32 13 0
L 6 -2 32 -60 12 0
l1 -6 13 12 -3 o
. 0 0 0 o0 0 -1

12

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)




The next task is to show that M L(M + MT) is negative definite. We write the symmetric

matrix M as a sum of five symmetric matrices,

M= ;:—,.-; [podts + 28, + (24 — Bo) s + Mo + M) . (2.38)

We shall show that M, is negative definite, and that M;(j = 2, ... 5) are non-positive definite.
The M’s are given by

0 o
0-2 1 0 O
0 1 -2 1 0
0 0 1 -2 1
0 0 0 1 -2

My = 1 =ML+M +MR  (239)
1 -2 1 0
1 <2 0
0 0 -3k
-1/25 0 0 0 o . . . v .
whe:eM,"=[ é'e" 0]’“‘!:[0 _1/2&]mdM.utheremumng(A-?)x(N-2)
middie block.
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(2.40)

-1

a‘.{z

(2.41)

o=t O\ o=

- - N — ]
=20 — O — )
(N — O — O — O — I Y )

2K~ — - N~ - N
(=K~ N — I Iy — Iy

(— X — N - -
[ N — 2 — 2 — Y - Y — ]
[— N — N — I — 3 — I ]
COO0OO0D
(— 2 — 2 — A — O — B ]
~~O0O00CO0Q

4‘?3 =

14
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 ~1/2 0 0 0 0 0
-30 +28 12-8 13 -6
0 1
2037y —(cas + ayma) | ~(0a7e + aama) | =(@a7s + as7)
12-8 -60 + 28 2-8 -2
0 0
—(aa7s + a3™) ~2ay7y ~(ay7q + aen) | =(as1y + as73)
13 2-58 -60+28 2-8
(] -2
=(aa7e + aqma) | —(as7q + au7s) —2047¢ —(ay7s + 057¢)
-6 -2 2-8 -38+ 3
0 28-3
—(as7s + as?a) | =(asms + a7 ) | —(e?s + asre) —2a57s
| 0 1 0 -2 B-8 |-26+3
(2.42)

J




[ =26+ 8 28-3 -2 0 1
0
28-8| -58+28 2-5 -2 -6

~20N-4TN—4 | ~(ON-3TN-¢ | ~(an-2TN-¢ | =(aN1TN-e| O

+an-4TN-3) | +aN-TN-3) | +aN_(Tx-1)

-2 $2-8 -60 + 23 2-8 13

. —(an-stw—¢ | ~2an-3Tn-3 | =(aN-27N-3 | =(aN-17v-s| O

M= +aN-_¢TN-3 +aN-3Tn-2) | +aN-3TN-1)

0 -2 2-5 -60 + 23 12-8

—(an-2TN-t | =(an-2TN-s | =2aN-2TN-3| ~(ana?n-a| O

+an_47N-3) | +an-sTN-3) +aN_aTN-1)

1 -6 13 12- 3 -30 + 28
—(an-17n—4 | =(an-17N-s | —=(an-17N-3 | —2aN17N-1| O
+an-4TN-1) | +ay-3Tva | +an-27n-1)
0 0 0 0 0 -1/2
(2.43)
Let us consider M, - see (2.39); it may be decomposed as follows:
1 =1 1 K
. -1
M= + 0 (2.44)
., =1 . e, .
1J1 -1 1 -1

The last matrix in non-positive definite. The first term is a product of a regular matrix with

its transpose, hence its negative is a negative definite matrix. Thus we established that Af;
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is negative definite for any finite dimension N. All its eigenvalues are negative. It remains
to show that the eigenvalues of M, /A? (see (2.38) are bounded away from sero by a constant
ash=0 (N—=x)

Consider a symmetric tridiagonal matrix S with, like M,, constant diagonals:
1

@0 o
0 oo f

0
Q
S= . ..b .‘a . (2.45)

a ba
X a b
Designate by D; the determinant of the upper-left j x j sub-matrix. Thus D, = b, D; =

b a
det[‘l b].etc.

We have then D, = b, D; = b% — @2 and in general
D; = bD;., - ¢*Dj; (2.46)

It can be shown (see Appendix I) that the solution to the recursion relation (2.46) is

where
0 = 51—2- [b+ Vi = (&1] (2.48)

g = ;i—,-[b-sm (2.49)
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1
[ Rl ]

(D2 = D) + D] (2.50)

1
#1 = g2

We bave already shown that M, is negative definite. The eigenvalue of M, are found from

B =

(D2 = 8Dy) p2 + Dy) (2.51)

det(Al; — 1)) = (--;z - A) . det(M; - AJ) - (--2% - ) =0 (252

thus either A = ~1/26; < 0 (because % will be taken positive) or A = eigeavalue of M, < 0.
We would like to investigate the bebavior of the eigenvalues of 58;M,. In particular we
would like to show that these eigenvalues (which are negative) are bounded away from zero.
To show this we analyze the behavior of M, — Al as N increases. We now take S = My=2Al.
Its determinant is given by Dx.2. Substituting (2.48)-(2.51) into (2.47) with j = N ~ 2 we

get after some elementary manipulations

oN-2
Dx.; = P sin(N ~1)8 (2.33)
where
p = Vi=B; dbm=2-); a=1 (2.54)

r= JR+pim2

¢ = tan~}(p/d)

From (2.52) we require
Dy.a =0 (2.55)

18




This is equivalent, see (2.53), to requiring
kx

= —— k

N=-1
From the definition of 6 and (2.54) we obtain

m( ke )= YA+ ),

N-1 2+ °

L., N=2

Squaring (2.57) we get a quadratic equation for A, the solution of which is

e o o)

3

[ kw
= =2 _l*m(}\_’:—l‘)]°

For any fixed N, the smallest values of |)| is given by (2.58) foc k = 1,

o= o = =21 - con (25)].

As N increases, we have

Ao = -2[1—(1—'2'(7':27)7*0(7\!1"))]

x?

&= —m s _'Ihﬂ‘

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

Thus the eigeavalues of M, /24A? (and hence of M, /2442) are bounded away from zero by

the value — (-5)

We now consider M,. One can verify that

4‘?’ = "ﬂﬂﬂ;"

19
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where

(2.62)

QD e N

O e O3 v~

Q ™t N~

(N — I — O
COOoOCOO
(— NI -
(— - -
(=N~ O — Y ]
oo OQC

(— X~ — X ]
(— N — - 2 — O ]
(=N~ —
CoOoOO0ODOOCO

o.lnw.luooo

N~

|
-~ Q0
o

3 is non-positive definite. In a similar fashion M is non-positive definite because

-

Therefore M

(2.63)

T
3

M,

My = =M,



with

000000 ‘
000000
000000
000000
000000
00000 0 -1
) 1 -1
My = . (2.64)
1 -1
100000
000000
000000
000000
000000
000000

The matrices M, and .ﬂ; are N x /N matrices with zero eatries except for 6 x 6 upper-left
(lower-right) blocks. It is sufficient to show that these blocks are negative definite. This
was done symbalically using the Mathematica software and plotted for 0 < TR < 1 and
% = 1. M, and M; are indeed negative definite for, 0 < 4p, 2 < 1. Thus we have shown
that M = 3(M + MT) is indeed negative definite, and its eigeavalues are bounded away
from 2er0 by (=x2/24), even as N = oc, and the error estimate (2.13) is valid.

3 The Two Dimensional Case

We consider the inhomogeneous diffusion equation, with constant coefficients, in a domain
. To begin with we shall assume that {) is convex and has a boundary curve 80 € C2.

The convexity restriction is for the sake of simplicity in presenting the basic idea; it will be

21




removed later. We thus have

%=k(-g—:¥+$)+f(z,y;t); z,yefd; t20; k>0 (8.1a)
u(z,y,0) = uo(z,y) (3.1b)
u(z,¥,t)|sn = up(t) (3.1¢)

We shall refer to the following grid representation:

|
™ .o m B N B ORI k=M,
..... &
9)
+ Foessecece k=3
..... §... ka2
§ ................ s .......... [y
jud o2 ju3 i j=M
—
B 4

Figure 2: Two dimensional grid.

We have Mz rows and M, columns inside 1. Each row and each column has a discreitized

structure as in the one 1-D case, see figure 1. Let the number of grid points in the &* row
be denoted by R\ and similarly let the number of grid points in the j** column be C;. Let

2



the solution projection be designated by U;a(t). By U(t) we mean, by analogy to the 1-D
case,

U(‘) = (ul.h U200y UR 1) UL,20 U2 2y e o g UR 2} e o« F UL MRy U2 Mpy -+« uRua.ng)

= (Il), Uz... e“hla) (3'2)

Thus, we have arranged the solution projection array in vectors according to rows, starting
from the bottom of Q.

If we arrange this array by columas (instead of rows) we will have the following structure

u(t) = (81,0, Un2s e e U T 820, W22 s U5 oo 3 UMGL UMe2r  + s UM one, )

= (uu@,..., u}.‘,") (3.3)

Since Ul)(2) is just a permutation of U(t), there must exist an orthogonal matrix P such
that

Ul(t) = PU (3.4)
If the length of U(t) is ¢, then P is an ¢ x ¢ matrix whose each row contains £ — 1 zeros and
a single 1 somewhere.

The second derivative operator 3*/922 in (3.1a) is represented on the A** row by the
differentiation matrix Df"), whose structure is given by (2.14). Similarly let 8%/8y? be given
on the j* column by D{*), whose structure is also given by (2.14). With this notation the
Laplacian of the solution projection is:

( g;'; + ;%‘_i) ug(t) = DU + DO 4 T 4 o) (3.5)

px)

e e m ——




D(r) = (3.6)

Dgﬂ ng)
Dg" D) = ng)
Dia, D,
where D) and D) are (£ x £) matrices and have the block structures shown. Ti) and T

are the truncation errors associated with D(*) and DI%), respectively. We now call attention
to the fact that D) and D) do not operate on the same vector. This is fixed using (3.4):
V() = VU = (DI 4 PTDM P)U 4 T 4 PTTY (3.7)
Thus (3.1a) becomes, by analogy to (2.5),
% = §(D'® + PTDWP)U 4 M + PTTO) 4 £(2) (3.8)

where f(t) is f(z,y;t) arranged by rows as a vector.
Before proceeding to the semi-discrete problem let us define:

M) = D — 1, Ay, - TR AR, (3.9)

where 7;,, A1, are the 7, and A defined in section 2, appropriate to the ™ row; similarly
for rr, and Ap,. In the same way, define

M,(!) - Dgi) - 18,Ay, — T, AR, (3.10)

where B and T stand for bottom and top.
We can now write the semi-discrete problem by analogy to (2.6)

%’- = MM® 4 PTMOIPYV 4 kGE) 4 kPTG 4 f(1) (3.11)
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where V is the numerical approximation to U;

M,‘"

M
M) = [ M ] M) = MY ; (3.12)

M) M) ]

and

GO = [(r,g1, + TuBR):-eos(TEaBLs + TRER: -+ (T, By + TRy By )|

G(') = [(f’lm + ™M 9T, ). ceny (m’u, -+ 17‘,81‘,), cany (fau.sal,y‘ + 173‘87". )] . (3.13)

Subtracting (3.11) from (3.8) we get in a fashion similar to the derivation of (2.9):

% = kl M + PT M p]E+ kT, (3.14)

where E = U =~ V is the two dimensianal array of the errors, ¢;;, arranged by rows as a
vector. T3 is proportional to the truncation error.
The time change of || E ||? is given by

%% | E 2= KE,(M'"™ + PTMWP)E) 4 k(E, T;) (3.15)
The symmetric part of M) 4+ PTMO)P is given by
UM 4 M) 4 PT(MO) 4 (017 (3.6)

Clearly M®) + M®T and MO 4 MO are block-diagonal matrices with typical blocks
given by M{™ 4+ M{"" and M + M". We bave already shown in the one dimensional
case that each one of those blocks is negative definite and bounded away from zero by x2/24.
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Therefore the operator (3.16) is also negative definite and bounded away from zero. The
rest of the proof follows the one dircnsicnal case and thus the norm of the error, || E ||, is
bounded by a constaat.

If the domain Q is not convex or simply connected then either rows or columns, or both,

may be “interrupted” by 80. In that case the values of the solution on each “internal”
interval (see figure (3] below) are taken as separate vectors.

v}

v (cMd)
]

J
Figure 3: Two dimensional grid, non convex domain.

Decomposing “interrupted” vectors in this fashion leaves the previcus analysis unchanged.
The length of U (or U(?) is again ¢, where ¢ is the number of grid nodes inside 0. The

differentiation and permutation matrices remain £ x ¢. Note that adding more “holes™ inside
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0 does not change the general approach.

4 Numerical Example
In this section we describe numerical results for the following problem:

% = R(Uee + Uyy) + f(z.9,1), (3,”)60, t>0, (4.1)

where Q1 is the region contained between a circle of radius rp = 1/2 and inner circle of radius
r; €0.1. The inner circle is not concentric with the outer one. Specifically (2 is described by

{(z -3+ (y-35)P< 1/4} n {(: -6+ (y=-5)12(1-83%0<é< .1} (4.2)

The cartesian gria in which Q is embedded spans 0 < 2,y < 1. We took Az = Ay, and ran
several cases with Az = 1/50, 1/75, 1/100. The geometry thus looks as follows:

z=0 0306 ] x

Figure 4:
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The source function f(z,y,t) was chosen different from sero so that we could assign an
exact analytic solution to (4.1). This enables one to compute the error E; = Uy — Vi

“exactly” (to machine accuracy). We chose & = 1 and
u(z, ¥, t) = 1 + cos(10 — 10z? — 103?) (4.3)
This leads to

f(zyy,t) = 400(z* +:%) cos(10t — 10z* - 10y°)

~ 50sin(10t — 1022 - 10y) (4.4)

From the expression for u(z,y,t) one obtains the boundary and initial conditions.

The problem (4.1), (4.2), (4.4) was solved using both a “standard” fourth order algorithm
(a 2-D version of (2.3)) and the new “SAT,” or “bounded error,” approach described in
Section 3. The temporal advance was via a fourth order Runge-Kutta.

The standard algorithm was run for Az = 1/50 and arangeof 0 < 6§ < .01 (09 < r; £ .1).
We found that for § > .0017323, the runs were stable and the error bounded for “long” times
(10° time steps, or equivalently t = 2). For 0 < § < .0017233 the results began to diverge
exponentially from the analytic solution. The “point of departure” depended on é. A
discussion of these results is deferred to the next section. Figures 5,6,7 show the Ly-norm of
the error vs. time for different radii of the inner “hole.”

The same configurations were also run using the “bounded error™ algorithm described in
Section 3 (see eq. (3.5)), and the results are shown in figures 8,9,10,11. It is scen that for
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¢'s for which the standard methods fails, the new algorithm still has a bounded error, as
predicted by the theory.

To check on the order of accuracy, the “SAT™ runs (with § = 0) were repeated for
Az = Ay = 1/75 and 1/100. Figure 12,13, and 14 show the logarithmic slope of the Lj, I,
aad L, errors to be less than —4; i.e., we indeed have a 4% order method. That the slopes
are larger in magnitude than 4.5 is attributed to the fact that as Az = Ay decreases the
percentage of “internal® points iucreases (the boundary points have formally only 3¢ oder
accuracy). It is therefore possible that if the number of grid points was increased much
further, the slope would tend to ~4. Lack of computer resources prevented checking this
point further. (For Az = 0.01, running 20,000 time steps, ¢ = .1, cpu time on a CRAY YMP
is about 5 hours). It should also be noted that the “bounded-error™ algorithm was run with

a time step, At, twice as large as the one used in the standard scheme. At this larger At
the standard scheme “explodes™ immediately.

orr T
¢.0993 9.9003
€.CC023 c.0002%
0.0002 ¢.0002
€.00038 2.00018
0.0¢C32 0.903:
o.0ccosf S N NN osos
et 095 1 135 1.5 15 3t T T s o35 1 s s a2t
Figure 5 & = 00017325, Standard  Figure 6: & = 0.0017323, Standard
scheme scheme
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Figure 7: § = 0.0015, Standard scheme
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Figure 9: § = 0.0013, SAT scheme
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Figure 11: § = 0.0017325, SAT scheme
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Figure 8: § = 0, SAT scheme
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Figure 10: § = 0.0017323, SAT scheme
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A study of the effect of size of At shows that the instabilities exhibited above are due to
the time-step being near the C.F.L.-limit. It is interesting that this C.F.L.-limit depends so
strongly on the geometry.

8 Conclusions

(i) The theoretical results show that one has to be very careful when using an algorithm
whose differentiation matrix, or rather its symmetric part, is not negative definite. For
some problems, such “standard” schemes will give good answers (i.e., bounded errors)
and for others instability will set in. Thus, for exampie, the *standard” scheme for
the 1-D case has a matrix which, for all 0 < 92,98 < 1, though not negative definite
has ecigenvalues with negative real parts. This assures, in the 1-D case, the temporally
asymptotic stability. In the 2-D case, even though each of the block sub-matrices of
the ¢ x £ z-and-y differentiation matrices has only negative (real-part) eigenvalues, it
is oot assured that the sum of the two £ x £ matrices will have this property. This
depends, among other things, on the shape of the domain and the mesh size (because
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the mesh size determines, for a given geometry, the 4 and yg's along the boundaries).

Thus that we might have the “paradoxical” situation, that for a given domain shape,
successive mesh refinement could lead to instability due to the occurrence of destabi-
lizing 4’s. This cannot happen if one constructs, as was done here, a scheme whose
differentiation matrices have symmetric parts that are negative definite.

It is also interesting to note that if one uses explicit standard method then the allow-
able C.F.L. may decrease extremely rapidly with change in the geometry that causes
decrease in the v's. This point is brought out in figures 5 to 7.

(ii) Note that the construction of the 2-D algorithm, and its analysis, which were based
on the 1-D case, can be extended in a similar (albeit more complex) fashion to higher
dimensions.

(iii) Also note that if the diffusion coefficient k, in the equation

ue = kA%
is a function of the spatial coordinates, k = k(x,y,2), the previous analvsis goes

through but the energy estimate for the error is now for a differeat, but equivalent

onorm.
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Appendix I
We start with
D,' = bD,‘-g - G’Dj-a

with
Dx =5,Dz =52—03

We associate with (A.1) a generating function f(z),

f(2) = 3 Die’
=0

Multiplying (A.1) by 2'~2 for each ; > 3, and summing both sides we obtain:

f =Dy - D,z
z

=‘!:D‘ -C’!

leading to

f = l[ D, + (D3 - bDy)z
T a? |22 - (b/a?)z + (1/a?)

1 Dy +(D; = bDy)s

a? (z = w)(z ~u)

where uy, u; are given by (2.48), (2.49).
We may also present f by

"Zl?[(zfu.)*(:fuz)]

8

(A1)

(A2)

(A3)

(Ad)

(A.5)

(A.6)




Comparing (A.6) and (A.3) we get expression for A and B as given in (2.50), (2.51). Ex-
panding the denominator in (A.6) we get the following series for f

Il A B ;
fle)m == Z;o (—ui""’ + Eﬁ) o, (A7)
from which it immediately follows (see (A.3)) that
bi=-%(4+5) (A8)
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